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From self-organized criticality to first-order-like behavior:
A new type of percolative transition
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A modification of one of the standard models of avalanches in a sandpile is proposed. We allow
two different values of the critical slope: a sliding never starts with a slope below the upper value and
stops only when the local slope falls below the lower one. As a result we find that the only avalanches
present involve the whole system, in sharp contrast with what is expected from self-organized critical
models. This behavior resembles more a first-order transition than a second-order one. We present a
method to study the gradual change from one behavior to the other. A possible link with percolative

transitions is discussed.
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Self-organized criticality (SOC) is by now a well estab-
lished framework for explaining the behavior of spatially
extended dynamical systems [1-3]. The range of appli-
cability of these ideas is very broad, including, among
others, 1/f noise [1], earthquakes [4], magnetic-domain
formation [5], pinned-flux lattices [6], Barkhausen effect
[7], and some features of economic systems [8].

From the very first papers of Bak, Tang, and Wiesen-
feld [1] they used a model of avalanches in sandpiles to
convey the general ideas involved in SOC. In fact, almost
all the literature published on this subject uses this as an
archetypical example. This is most probably due to two
different reasons: on the one hand, that image is very
simple and easy to grasp; on the other hand, its imple-
mentation through cellular automata entails no special
difficulties.

In a language appropriate to sandpiles, SOC predicts
that when sand is slowly added to the pile, the system
will dynamically adjust itself to a situation that, under
perturbation, evolves by avalanches of all possible sizes,
i.e., those having a variable number S of grains of sand
that range from 1 to the size of the whole system. The
distribution function D(S) that measures the number of
avalanches of size S (i.e., involving S grains) has been
studied in great detail [3]. Among other features, it de-
pends upon the dimensionality of the cellular automaton
that is used to describe the pile and upon the updating
rule. For the purposes of the present paper we will keep
to the case studied by Bak, Tang, and Wiesenfeld [1],
in which D(S) follows a power law [i.e., D(S) ~ S~7],
characterized by a“critical index” 7 ~ 1.

In order to check the consequences of the theory several
experiments have been conducted on real sandpiles. The
work of Held et al. [9] provided some support to the SOC
model, particularly for small enough sandpiles. However,
these experiments in larger piles also suggested that the
occurrence of SOC is a finite-size effect. There is one
recent experiment [10] in which it was found that the
only avalanches present are roughly of the size of the
whole system. Moreover, the experiment shows that the
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slope of the pile can slowly be increased and nothing
happens until a “supercritical” slope s is reached. A
further increase gives rise to an avalanche that only stops
when the slope falls below a minimum value 8, < 6as.
These results have been described as being more similar
to a first-order phase transition, rather than to critical
phenomena.

These results indicate that further experiments are
needed in order to know if sandpiles are a good exam-
ple of systems displaying self-organized critical behavior.
On the other hand, it is natural to consider the attrac-
tive problem of whether a single theoretical framework
can be constructed for extended, open systems, capa-
ble of accounting for behaviors resembling those seen in
second-order- and first-order-like transitions. The pur-
pose of the present paper is to present such a framework.

Since the flow of sand in a pile is usually represented by
cellular automata on a square lattice (of size Lx L = Nr),
the above problem can be rephrased in a more concrete
way as follows: what modifications have to be introduced
in the standard cellular automata to find a behavior sim-
ilar to a first-order phase transition? In what follows
we agree to identify a “first-order-like” behavior, with a
regime of avalanches characterized by the presence of hys-
teresis, a distinctive landmark of first-order transitions.
In order to do so we proceed according to the following
steps:

(i) We start as in Ref. [1(a)], preparing the system by
(randomly) assigning to every automaton a local (inte-
ger) variable z 3> z.. This represents the relative height
of sand at the site with respect to its neighbors (the local
slope). z. is the threshold value for the slope of sand that
in more general cases depends upon the number of dimen-
sions of the lattice (the number of neighbors of each site).
We will restrict our analysis to square lattices; therefore
in what follows we take z. = 4.

(ii) Next the lattice is allowed to relax to a stationary
or inactive state Z through “avalanches.” In ordinary
two-dimensional SOC models, a site with z > 2. gives
rise to an avalanche passing one grain of sand to each
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of its four neighbors, thereby reducing its z — z — 4.
This process is assumed to take place in all sites of the
lattice that are not on its border (the border acts as a
sink: if a grain reaches it, is removed from the system).
Within the present framework a hysteresislike property
corresponds to increasing the slope beyond the critical
value without inducing avalanches. This is very much the
same as allowing for the possibility of overheating a liquid
beyond the evaporating point. This calls for a change of
this rule. We therefore assume that avalanches can only
start when z = 2z, +2. In ordinary SOC models the state
7 involves only sites with z < z.. With our modified
rule, the new state Z involves sites with 2z < z.+ 1. This
change also requires a modification in the next step of the
calculation, in which how avalanches propagate through
the system becomes crucial.

(iii) After the state Z is reached it is perturbed. Each
perturbation gives rise to an avalanche whose size and
lifetime are stored in order to construct point by point
the functions D(S) and D(¢). In ordinary SOC models
an avalanche is induced by adding a single grain to a site
in which z = z.. In our framework, perturbations have
to be made by adding a grain of sand to sites having
a “supercritical” slope z = 2. + 1, since it is assumed
that these are the only sites that can start avalanches.
However, this is not enough. In this case a behavior pre-
senting hysteresis is one in which avalanches start only if
z > 2.+ 1, but once they have started they continue to
go as long as sites with z > 2, are reached by a grain of
sand. We therefore add the rule that if a site with z = 2,
is reached by a grain of sand from an avalanche that has
started elsewhere, it should become active and propa-
gate the flow of sand in a dominolike process: although
sites with z = 2, cannot start avalanches, they can prop-
agate them if started elsewhere. By changing this and
the preceding step we have assumed that there are two
critical slopes: the avalanches start only when the slope
is higher than the upper value and they stop only when
it has dropped below the lower value. To construct the
functions D(S) and D(t) all the “super-critical” sites of
T are perturbed, one at a time, always starting from the

same configuration.

(iv) To have more representative data, steps (i)—(iii)
are repeated many times (we used 500 different initial
states) and averages are taken. A coarse-graining average
is also made because data are represented in a log scale.
This “coarse graining” is performed by averaging data of
a whole interval and assigning them to a “representative”
point of it.

Having introduced these changes in the rules of indi-
vidual cellular automata, we expect to find a change in
the behavior of the system as a whole. A modification
of the distribution of avalanches should be expected in
such a way that the function D(S) will be peaked near
S = Nrp.

We have performed numerical simulations on square
lattices of size L x L, with L = 10, 20, 30, 40, and 50.
Averaging has been made over an ensemble of 500 sam-
ples. The effect of the changes is indeed overwhelming:
essentially all avalanches are of the size of the whole lat-
tice; i.e. to all practical purposes D(S) is a § function
centered at S = Np.

To understand this effect in a more detailed fashion
we now turn to analyze how the system gradually ap-
proaches such a behavior. A controlled transition from
self-organized criticality to first-order-like behavior can
be induced in the following way:

(') Initially we allow the system to evolve into the
inactive state with sites having 2 < 2z, as in ordinary
SOC models. Relaxation therefore takes place through
avalanches started at sites with z = z..

(ii") Once this state is obtained, a small number of
sites C are chosen at random and the corresponding local
slopes are set to the value z = 2. + 1. We call this
process “seeding.” We obtain in this fashion a state Z*
that resembles Z in the sense that some of its sites have
a “supercritical” slope. The main difference is that its
density can be controlled in the seeding process.

(iii") After seeding, we proceed as in step (iii) described
above to construct the function D(S). Each supercriti-
cal site is perturbed, one at a time, and always starting
from the same state Z*, and avalanches are induced. This
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calculation can be done for any desired values of the den-
sity of implanted supercritical sites, therefore allowing a
study of a whole variety of states Z* ranging from one
almost identical to a SOC state to one with the same
density of supercritical sites as Z.

(iv') Averaging proceeds as before.

We have made numerical simulations for several lattice
sizes (L = 10, 20, 30, 40, and 50), allowing a different
number of seeds in state Z*. We have considered C =
10, 20, 30, 50, 75, 100, 150, 200, and 250. In all cases
the averaging mentioned in the step (iv') has also been
made over an ensemble of 500 samples.

The effect of an increasing density of supercritical sites
can be observed in Fig. 1 in which we present the results
for a lattice of 50 x 50 sites. As C increases one first
observes that the dip produced in D(S) due to the upper
cutoff introduced by the finite size of the lattice is rapidly
washed out. For bigger values of C, D(S) develops a
peak around S ~ Nr. For even larger values of C the
distribution becomes a é-like function.

Before a full é§ function has developed, the distribution
D(S) for low values of S can be approached by a power
law. A most interesting result is obtained by plotting the
slope 7 of the log-log plot of that portion of D(S), as a
function of z = C/Np. This has been done in Fig. 2 for
the most representative lattice sizes we have considered.
It is apparent that all points lie nearly on a straight line,
thus indicating that 7 has scaling, i.e., it is only a function
of z and not of C and Nr separately; moreover, from our
data we find that the exponent can be approximated by
the straight line 7 ~ 5.54x + 1.01 .

We have made a preliminary study of the effect of the
finite size of our samples. Figure 3 shows a finite-size
scaling analysis of our data, while in Fig. 4 we represent
the same data using a multifractal fit [3]. Notice that in
both cases we have included size effects but not the effect
of the number of seeds.

In Figs. 3 and 4 we show the distributions D(S) for
C = 50 and L = 30, 40 and 50, well below the value for
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sizes considered in the simulations (C = 30, 40, and 50) and
a different number of implanted seeds. The results of the
numerical experiment have been fitted with the straight line
T = 5.54z + 1.01.
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FIG. 3. Finite-size scaling analysis of the data for several
lattice sizes.

which the §-like distribution fully develops. Two regimes
can easily be identified, one for very small and one for
very large avalanches. At the small-S end a power law
is adequate to fit D(S), while at the other a very nar-
row peak develops. From Fig. 3 we conclude that our
results are independent of the size of the sample. On
the other hand, information about the crossover region
between both regimes can be obtained from Fig. 4. The
three rightmost small arrows indicate the beginning of
these regions for every lattice size. Call S*(L) the corre-
sponding avalanche size. To interpret these results [13]
we calculate for L = 30, 40, and 50 the fraction S*(L)/L?
getting 0.65, 0.64, and 0.66, respectively. In other words,
the departure from SOC starts to show up for avalanches
covering = 2/3 of each sample, giving again a result in-
dependent of the lattice size. These values are only qual-
itative, because they are affected by sizable errors in the
graphical extrapolations. More extensive calculations are
needed in order to find the  dependence.

We believe that an attractive way of looking at the
transition that occurs as the density C/Nr grows is to
regard it as a percolative transition with clusters that in-
volve all the sites of the lattice. A few years ago Tang
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FIG. 4. Multifractal fit of the same data in Fig. 3. The
arrows show the crossover regions.
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and Bak [11] found that, within the mean-field approx-
imation, the critical exponents of SOC and percolation
were identical. They did not follow up this point, how-
ever, because numerical simulations indicated that these
two phenomena were not in the same universality class.
From a physical point of view it is clear, however, that
the situation studied in this paper truly corresponds to
a percolative transition: at a critical density of seeds,
an avalanche that is started at any “supercritical” site
propagates, reaching all sites of the lattice. There is no
contradiction, however, because there is a clear difference
between normal percolation [12] and the phenomenon
studied here. In our case site probabilities are dynam-
ically changed by the avalanches, and as a result perco-

lation takes place before the critical value for the static
percolation problem is reached. A very rough estimate of
the new critical value is z < 0.20, which should be com-
pared with 0.5 and 0.593, which correspond respectively
to the bond and site critical values for the square lattice.
The properties of this type of percolation require further
study; work in this direction is in progress.
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